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Power laws and Zipf’s law

• Size distribution of many economic variables obeys power law:

P(X > x) ∼ x−α

• income & wealth (Pareto, 1896), α ≈ 1.5-3
• cities (Auerbach, 1913; Zipf, 1949), α ≈ 1
• firms (Axtell, 2001), α ≈ 1
• consumption (Toda & Walsh, 2015), α ≈ 4
• . . .

• Special case: power law with α ≈ 1 is called Zipf’s law and
empirically holds for cities and firms
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U.S. 2011 Census of firm size
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Pareto exponent over time
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Existing explanations

• Krugman (1996):

“There must be a compelling explanation of the
astonishing empirical regularity.”

• Most existing explanations use random growth model
• Simon (1955), Simon & Bonini (1958), Gabaix (1999),

Luttmer (2007), Aoki & Nirei (2017), . . .

• However, all require assumptions coming outside of model,
such as

• minimum size
• small expected growth rate of existing units

• Hence explanation of Zipf’s law remains incomplete
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Contribution

• I propose a heterogeneous-agent, dynamic general equilibrium
model that explains Zipf’s law without ad hoc assumptions

• Key ingredients:
1. Gibrat’s law of proportional growth (homothetic preferences,

constant-returns-to-scale technology, multiplicative shocks)
2. Constant probability of birth/death
3. Production factor in limited supply (new)

• Intuition:
• Well-known that 1 + 2 generates power law (double Pareto

distribution (Reed, 2001))
• With CRS technology and factor in limited supply (labor),

decreasing returns at aggregate level (0 aggregate growth)
=⇒ low growth of individual units in stationary equilibrium
=⇒ get Zipf’s law via endogenous low growth

• Model consistent with the fact that Zipf’s law empirically
holds only for cities and firms, which consist of people
(inelastic)
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Random growth model

• Virtually all existing explanations use random growth model

dXt = g(Xt)dt + v(Xt) dBt ,

where g(·): drift, v(·): volatility, Bt : Brownian motion

• If g(x) = gx and v(x) = vx : geometric Brownian motion
(GBM)

• Useful tool to compute cross-sectional distribution:
Fokker-Planck equation (Kolmogorov forward equation)
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Fokker-Planck equation

• Letting p(x , t) be cross-sectional density, then

∂p

∂t
= − ∂

∂x
(gp) +

1

2

∂2

∂x2
(v2p)

• If a stationary density p(x) exists, then 0 = −(gp)′ + 1
2 (v2p)′′

• Integrating once, we get 0 = −gp + 1
2 (v2p)′

• Letting q = v2p and solving ODE, we get

p(x) =
1

v(x)2
exp

(∫
2g(x)

v(x)2
dx

)
,

where constant of integration determined by
∫
p(x) dx = 1
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Existing explanations

• Consider GBM, so g(x) = gx and v(x) = vx

• Assume there is a minimum size xmin > 0 and g < 0, so that
a steady state exists

• Using previous formula, we can show p(x) = ζxζminx
−ζ−1 and

P(X > x) =

(
x

xmin

)−ζ
,

where ζ = 1− 2g
v2 > 1: Pareto distribution

• If |g | � v2 (low growth), then ζ ≈ 1: Zipf’s law

• Alternatively, since mean size is

x̄ =

∫ ∞
xmin

xp(x) dx =
ζ

ζ − 1
xmin,

we get ζ = 1
1−xmin/x̄

. Hence ζ ≈ 1 if xmin � x̄ (small

minimum size)
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Difficulties

1. Existence of a minimum size xmin is an ad hoc assumption
• In the presence of a minimum size, rational agents will behave

differently near and far from the boundary
=⇒ will not get GBM in general

2. In a fully specified economic model, g , v are endogenous
variables, and in general there is no reason to expect that low
growth condition |g | � v2 holds
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GBM with constant birth/death

• Consider GBM with no minimum size, but with constant
birth/death at Poisson rate η and initial size x0

• Fokker-Planck equation in steady state is FPE without death

0 = −(gxp)′ +
1

2
(v2x2p)′′ − ηp

• By solving second order ODE, we can show

p(x) =

{
αβ
α+β x

α
0 x
−α−1, (x ≥ x0)

αβ
α+β x

−β
0 xβ−1, (0 < x < x0)

(double Pareto) where α > 0 > −β are solutions to quadratic
equation

v2

2
ζ2 +

(
g − v2

2

)
ζ − η = 0
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GBM with constant birth/death

• Solving quadratic equation

v2

2
ζ2 +

(
g − v2

2

)
ζ − η = 0,

upper tail Pareto exponent is

α =
1

2

√(1− 2g

v2

)2

+
8η

v2
+

(
1− 2g

v2

)
• Hence minimum size is no longer necessary, but to get Zipf’s

law we still need low growth condition |g | , η � v2
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Minimal model of city (village) size

• Continuum of villages and households, with mass 1 and N

• Single consumption good (potato)

• Village authority hires labor and uses stock of potatoes to
produce new potatoes

• Villages are hit by idiosyncratic productivity shocks as well as
famines (rare disasters)

• When a famine hits, all potatoes wiped out, but village
authority receives fraction κ of potatoes of all other villages
according to mutual insurance agreement

• Households eat potatoes and migrate across villages freely
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Evolution of potatoes

• Letting xt be stock of potatoes in typical village, dynamics is

dxt = (F (xt , nt)− ωnt)dt − ηκxt dt + vxt dBt ,

where nt : labor input, F : CRS production function, ω: wage,
η: Poisson rate of famine, v : idiosyncratic volatility

• Village authority maximizes profits, so solves
nt = arg maxn[F (xt , n)− ωn]

• Letting f (x) = F (x , 1), by FOC ω = f (y)− yf ′(y), where
y = xt/nt is steady state potato-labor ratio

• Substituting into equation of motion,

dxt = (µ− ηκ)xt dt + vxt dBt ,

where µ = f ′(y) =⇒ GBM
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Equilibrium condition

• Individual village: dxt = (µ− ηκ)xt dt + vxt dBt

• In a short time interval ∆t, η∆t villages experience famine, so
aggregate stock of potatoes X satisfies

X + ∆X = (1− η∆t)(1 + (µ− ηκ)∆t)X︸ ︷︷ ︸
Aggregate potatoes of non-famine villages

+ (η∆t)(κX )︸ ︷︷ ︸
Aggregate potatoes of famine villages

=(1 + (µ− η)∆t)X + higher order terms.

• Subtracting X from both sides and letting ∆t → 0, we obtain
dX = (µ− η)X dt

• In steady state, X = constant, so it must be µ = η:
endogenous low growth dxt = η(1− κ)xt dt + vxt dBt
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Simple explanation of Zipf’s law

Proposition (Zipf’s law)

The stationary city size distribution is double Pareto. The upper
tail Pareto exponent ζ satisfies

1 < ζ < 1 +
2ηκ

v2
.

As η → 0, we obtain Zipf’s law ζ → 1.

Proof.

• ζ is positive root of q(ζ) = v2

2 ζ
2 +
(
g − v2

2

)
ζ − η Why? with

g = η(1− κ)

• Can show q(1) < 0 and q(1 + 2ηκ/v2) > 0 by direct
substitution, so 1 < ζ < 1 + 2ηκ

v2
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General theory

• Above is a minimal model, but Zipf’s law holds in a wide
variety of GE models (details in paper)

• Ingredients:

1. an agent type solves a homogeneous problem (homothetic
preferences, CRS technology, proportional constraints),

2. agents enter/exit the economy at small rate η > 0, and
3. at least one production factor is in limited supply

• Robust to

1. elastic labor supply,
2. balanced growth,
3. coexistence of Zipf and non-Zipf distributions,
4. random initial size,
5. multiple agent types,
6. discrete time model with non-Gaussian shocks
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Model of firm size

• So far, very little optimizing behavior by agents
(in order to illustrate the essential mechanism)

• Consider a dynamic general equilibrium model of firm size
with fully optimizing agents (entrepreneurs with mass 1 and
workers with mass N)

• Workers supply labor, consume, and save/borrow at
equilibrium risk-free rate

• Entrepreneurs are born with 1 unit of capital, hire labor,
operate CRS technology using capital with idiosyncratic
investment risk, and go bankrupt at constant Poisson rate η
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Workers

• Workers are infinitely lived and maximize CRRA utility

Ut =

∫ ∞
0

e−ρs
c

1−1/ε
t+s

1− 1/ε
ds

subject to budget constraint dxt = (rxt + ω − ct)dt, where ρ:
discount rate, ε: EIS, xt : financial wealth, r : (equilibrium)
risk-free rate, ω: wage

• Letting wt = xt + ω/r be effective wealth, get
dwt = (rwt − ct) dt

• Merton (1971)-type optimal consumption-saving problem:
solution is ct = (ρε+ (1− ε)r)wt

• By budget constraint, wealth dynamics is dwt = ε(r − ρ)wt dt
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Entrepreneurs

• Epstein-Zin preferences with RRA γ and EIS ε

• Budget constraint is

dxt = (F (kt , nt)− ωnt + (r + η)bt − ct)dt + σkt dBt ,

where kt : capital, bt : bond holdings, xt = kt + bt : net worth,
nt : labor input, ct : consumption, ω: wage, η: bankruptcy
rate, σ: idiosyncratic volatility

• Letting y = kt/nt be equilibrium capital-labor ratio and
µ = f ′(y), by same argument as in village economy we get

dxt = (re + (µ− re)θ −m)xt dt + σθxt dBt ,

where re = r + η: effective risk-free rate, θ = kt/xt : leverage,
m = ct/xt : marginal propensity to consume
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Entrepreneurs

• Again, standard Merton (1971)-type optimal
consumption-saving-portfolio problem. Optimal rules are

θ =
µ− re
γσ2

,

m = (ρ+ η)ε+ (1− ε)

(
re +

(µ− re)2

2γσ2

)
.

• Substituting into budget constraint, wealth dynamics is

dxt = gxt dt + vxt dBt

(GBM), where drift g and volatility v are given by

g = (r − ρ)ε+ (1 + ε)
(µ− re)2

2γσ2
,

v = σθ =
µ− re
γσ

.
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Equilibrium

• There is no reason why preference parameters should be the
same for workers and entrepreneurs

• Let discount factor and EIS of workers be ρW , εW , and those
for entrepreneurs ρ, ε

Theorem (Existence)

Suppose that f (x) = F (x , 1) satisfies the usual Inada conditions
f ′ > 0, f ′′ < 0, f ′(0) =∞, and f ′(∞) ≤ 0. Then a stationary
equilibrium exists if and only if(

1− 1

ȳN

)
η > −ρε,

where ȳ > 0 is the (unique) number such that f ′(ȳ) = η.
In particular, an equilibrium exists if η > 0 is sufficiently small.
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Zipf’s law

• Unlike in the previous village economy, κ = 1/K and volatility
v are endogenous (K : aggregate capital)

• Hence even though equation of motion

dxt = η(1− κ)xt dt + vxt dBt

is same as before, ζ → 1 as η → 0 is not obvious

Theorem (Zipf’s law)

The upper tail Pareto exponent ζ satisfies

1 < ζ < 1 +
2ηκ

v2
.

As η → 0, κ = 1
K = 1

yN is bounded above and v = σθ = f ′(y)−r−η
γσ

is bounded away from 0, so Zipf’s law ζ → 1 holds.
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Calibration

• Cobb-Douglas technology F (k , n) = kαn1−α − δk
• Model is completely specified by the parameters

(ρW , ρ, γ, ε, α, δ, σ, η,N)

• Preference and technology parameters are ρ = 0.04, ε = 1,
α = 0.36, δ = 0.08, and σ = 0.2, as in Angeletos (2007)

• ρW = 0.01 to match historical risk-free rate

• In 2011 U.S. data, 5,684,424 firms employed 113,425,965
workers (19.95 workers per firm on average), so N = 20

• γ = 1 because entrepreneurs should not be so risk averse (also
consider γ = 0.5, 2 for robustness)

• η is bankruptcy rate (2.5% in data, Luttmer (2010)) as well
as spread of corporate bonds (about 2%, Gilchrist et al.
(2009)), so η = 0.025 (also consider η = 0.05, 0.1)
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Results
Quantity Symbol Values

Risk aversion γ 1 0.5 2 1 1
Bankruptcy rate (%) η 2.5 2.5 2.5 5 10

Capital-labor ratio y 3.49 4.01 2.93 2.58 1.65
Wage ω 1.004 1.055 0.942 0.900 0.767
Private premium (%) µ− re 4.68 3.31 6.61 5.62 7.13
Equity premium (%) µ− r 7.18 5.81 9.11 10.62 17.13
Leverage θ 1.17 1.65 0.83 1.41 1.78
Volatility (%) v 23.4 33.1 16.5 28.1 35.6
Pareto exponent ζ 1.007 1.004 1.011 1.011 1.019

• Riskier environment (γ ↑ or η ↑) leads to high equity
premium, low capital, and low wage, but different mechanism

• With γ ↑, risk aversion leads to less leverage and lower
volatility (portfolio effect)

• With η ↑, more destruction of capital but higher leverage and
volatility due to cheap labor (resource effect)
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Sensitivity analysis
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Sensitivity analysis

• Randomly generate 104 parameters, up to 5-fold change from
baseline (for α, uniformly generate from [0.1α, 1.9α])

• mean = 1.0312, median = 1.0089, 95 percentile = 1.1313
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Conclusion

• Developed a fully specified, dynamic general equilibrium model
that explains Zipf’s law (Pareto exponent very close to 1)

• Key ingredients are

1. Gibrat’s law of proportional growth (homothetic preferences,
constant-returns-to-scale technology, multiplicative shocks)

2. Constant probability of birth/death
3. Production factor in exogenously bounded supply

• Model explains why Zipf’s law is observed for cities and firms,
which consist of people (inelastic supply)
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